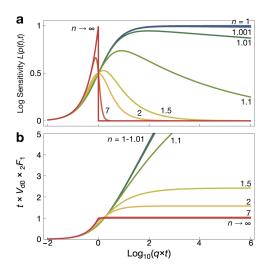
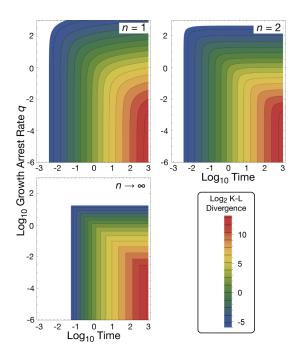
Supporting Information

Survival of phenotypic information during cellular growth transitions


J. Christian J. Ray*

*Corresponding author.


Address:

Center for Computational Biology Department of Molecular Biosciences University of Kansas 2030 Becker Dr. Lawrence, KS 66047

Email: jjray@ku.edu Tel: 785-864-1506

Figure S1. Effects of changing the steepness parameter in the growth arrest rate, n, on protein dynamics with negligible growth-independent protein loss ($\delta = 0$). **a.** Logarithmic change in protein concentration over time for various values of steepness parameter n. **b.** Behavior of the generalized growth-mediated dilution term, $tV_{d0} {}_{2}F_{1}\left(1,\frac{1}{n};1+\frac{1}{n};-\left(qt\right)^{n}\right)$, for various values of n.

Figure S2. Kullback-Leiber divergence, in units of bits, for n = 1, 2, and $n \to \infty$. White regions, D < $2^{-6} = 1/64$. Computed from Eqn. (9) for a gamma distribution. For sufficiently sharp and fast growth arrest transitions, the divergence is negligible, or stops increasing at low values, as protein turnover is halted.